When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    Furthermore, the Lebesgue integral can be generalized in a straightforward way to more general spaces, measure spaces, such as those that arise in probability theory. The term Lebesgue integration can mean either the general theory of integration of a function with respect to a general measure, as introduced by Lebesgue, or the specific case of ...

  3. Lebesgue–Stieltjes integration - Wikipedia

    en.wikipedia.org/wiki/Lebesgue–Stieltjes...

    An alternative approach (Hewitt & Stromberg 1965) is to define the Lebesgue–Stieltjes integral as the Daniell integral that extends the usual Riemann–Stieltjes integral. Let g be a non-decreasing right-continuous function on [ a , b ] , and define I ( f ) to be the Riemann–Stieltjes integral

  4. Locally integrable function - Wikipedia

    en.wikipedia.org/wiki/Locally_integrable_function

    Measure and integration (as the English translation of the title reads) is a definitive monograph on integration and measure theory: the treatment of the limiting behavior of the integral of various kind of sequences of measure-related structures (measurable functions, measurable sets, measures and their combinations) is somewhat conclusive.

  5. Dominated convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Dominated_convergence_theorem

    Lebesgue's dominated convergence theorem is a special case of the Fatou–Lebesgue theorem. Below, however, is a direct proof that uses Fatou’s lemma as the essential tool. Since f is the pointwise limit of the sequence ( f n ) of measurable functions that are dominated by g , it is also measurable and dominated by g , hence it is integrable.

  6. Fubini's theorem - Wikipedia

    en.wikipedia.org/wiki/Fubini's_theorem

    The stronger versions of Fubini's theorem on a product of two unit intervals with Lebesgue measure, where the function is no longer assumed to be measurable but merely that the two iterated integrals are well defined and exist, are independent of the standard Zermelo–Fraenkel axioms of set theory.

  7. Henri Lebesgue - Wikipedia

    en.wikipedia.org/wiki/Henri_Lebesgue

    Henri Léon Lebesgue ForMemRS [1] (/ l ə ˈ b ɛ ɡ /; [3] French: [ɑ̃ʁi leɔ̃ ləbɛɡ]; June 28, 1875 – July 26, 1941) was a French mathematician known for his theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an axis and the curve of a function defined for that axis.

  8. Lebesgue measure - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_measure

    Lebesgue measure is both locally finite and inner regular, and so it is a Radon measure. Lebesgue measure is strictly positive on non-empty open sets, and so its support is the whole of R n. If A is a Lebesgue-measurable set with λ(A) = 0 (a null set), then every subset of A is also a null set. A fortiori, every subset of A is measurable.

  9. Differential form - Wikipedia

    en.wikipedia.org/wiki/Differential_form

    The integral of an n-form ω on an n-dimensional manifold is defined by working in charts. Suppose first that ω is supported on a single positively oriented chart. On this chart, it may be pulled back to an n-form on an open subset of R n. Here, the form has a well-defined Riemann or Lebesgue integral as before.