When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hydrogen bond - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_bond

    Consequently, hydrogen bonds between or within solute molecules dissolved in water are almost always unfavorable relative to hydrogen bonds between water and the donors and acceptors for hydrogen bonds on those solutes. [44] Hydrogen bonds between water molecules have an average lifetime of 10 −11 seconds, or 10 picoseconds. [45]

  3. Dimerization - Wikipedia

    en.wikipedia.org/wiki/Dimerization

    In chemistry, dimerization is the process of joining two identical or similar molecular entities by bonds. The resulting bonds can be either strong or weak. Many symmetrical chemical species are described as dimers, even when the monomer is unknown or highly unstable. [1] The term homodimer is used when the two subunits are identical (e.g.

  4. Chemical bond - Wikipedia

    en.wikipedia.org/wiki/Chemical_bond

    Hydrogen bonds of the form A--H•••B occur when A and B are two highly electronegative atoms (usually N, O or F) such that A forms a highly polar covalent bond with H so that H has a partial positive charge, and B has a lone pair of electrons which is attracted to this partial positive charge and forms a hydrogen bond.

  5. Properties of water - Wikipedia

    en.wikipedia.org/wiki/Properties_of_water

    Although hydrogen bonding is a relatively weak attraction compared to the covalent bonds within the water molecule itself, it is responsible for several of the water's physical properties. These properties include its relatively high melting and boiling point temperatures: more energy is required to break the hydrogen bonds between water molecules.

  6. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    The π bond between the carbon atoms perpendicular to the molecular plane is formed by 2p–2p overlap. Each carbon atom forms covalent C–H bonds with two hydrogens by s–sp 2 overlap, all with 120° bond angles. The hydrogen–carbon bonds are all of equal strength and length, in agreement with experimental data.

  7. Degree of unsaturation - Wikipedia

    en.wikipedia.org/wiki/Degree_of_unsaturation

    For hydrocarbons, the DBE (or IHD) tells us the number of rings and/or extra bonds in a non-saturated structure, which equals the number of hydrogen pairs that are required to make the structure saturated, simply because joining two elements to form a ring or adding one extra bond (e.g., a single bond changed to a double bond) in a structure reduces the need for two H's.

  8. Intermolecular force - Wikipedia

    en.wikipedia.org/wiki/Intermolecular_force

    Intermolecular hydrogen bonding is responsible for the high boiling point of water (100 °C) compared to the other group 16 hydrides, which have little capability to hydrogen bond. Intramolecular hydrogen bonding is partly responsible for the secondary, tertiary, and quaternary structures of proteins and nucleic acids.

  9. Molecule - Wikipedia

    en.wikipedia.org/wiki/Molecule

    The study of molecules by molecular physics and theoretical chemistry is largely based on quantum mechanics and is essential for the understanding of the chemical bond. The simplest of molecules is the hydrogen molecule-ion, H 2 +, and the simplest of all the chemical bonds is the one-electron bond.