Search results
Results From The WOW.Com Content Network
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
Osmotic pressure is a measure of the tendency of water to move into one solution from another by osmosis. [1] The higher the osmotic pressure of a solution, the more water tends to move into it. Pressure must be exerted on the hypertonic side of a selectively permeable membrane to prevent diffusion of water by osmosis from the side containing ...
He states "only water molecules can pass the semipermeable membrane. As a result of the osmotic pressure difference between both solutions, the water from solution B thus will diffuse through the membrane in order to dilute solution A". [10] The pressure drives the turbines and power the generator that produces the electrical energy. Osmosis ...
In animal cells excessive osmotic pressure can result in cytolysis due to the absence of a cell wall. Osmotic pressure is the basis of filtering ("reverse osmosis"), a process commonly used in water purification. The water to be purified is placed in a chamber and put under an amount of pressure greater than the osmotic pressure exerted by the ...
When a paint coating is applied on a metallic surface contaminated with soluble salts, an osmotic blistering process takes place (Figure 8.10). Osmosis is the spontaneous net movement of solvent molecules (water) through a semipermeable membrane (coating film) into a region of higher solute concentration (the salt contaminated substrate).
Reverse osmosis uses an applied pressure gradient across a semipermeable membrane to overcome osmotic pressure and remove water molecules from the solution with hardness ions. The membrane has pores large enough to admit water molecules for passage; hardness ions such as Ca 2+ and Mg 2+ will not fit through the pores.
This is well known in reverse osmosis where solutes from the feedwater diffuse to the product water, however in the case of forward osmosis the situation can be far more complicated. In FO processes we may have solute diffusion in both directions depending on the composition of the draw solution, type of membrane used and feed water ...
Turgor pressure can be deduced when the total water potential, Ψ w, and the osmotic potential, Ψ s, are known in a water potential equation. [30] These equations are used to measure the total water potential of a plant by using variables such as matric potential, osmotic potential, pressure potential, gravitational effects and turgor pressure ...