Ad
related to: slater orbital nodes in spine surgery videowexnermedical.osu.edu has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Slater-type orbitals (STOs) or Slater-type functions (STFs) are functions used as atomic orbitals in the linear combination of atomic orbitals molecular orbital method. They are named after the physicist John C. Slater , who introduced them in 1930.
It is a particular case of a Slater-type orbital (STO) in which the principal quantum number n is 1. The parameter ζ {\displaystyle \zeta } is called the Slater orbital exponent . Related sets of functions can be used to construct STO-nG basis sets which are used in quantum chemistry .
The Slater-type orbital (STO) is a form without radial nodes but decays from the nucleus as does a hydrogen-like orbital. The form of the Gaussian type orbital (Gaussians) has no radial nodes and decays as e − α r 2 {\displaystyle e^{-\alpha r^{2}}} .
In 1929 John C. Slater derived expressions for diagonal matrix elements of an approximate Hamiltonian while investigating atomic spectra within a perturbative approach. [1] The following year Edward Condon extended the rules to non-diagonal matrix elements. [ 2 ]
STO-nG basis sets are minimal basis sets, where primitive Gaussian orbitals are fitted to a single Slater-type orbital (STO).originally took the values 2 – 6. They were first proposed by John Pople. A minimum basis set is where only sufficient orbitals are used to contain all the electrons in the neutral atom. Thus for the hydrogen atom, only a single 1s orbital is needed, while for a carbon ...
The Slater determinant arises from the consideration of a wave function for a collection of electrons, each with a wave function known as the spin-orbital (), where denotes the position and spin of a single electron. A Slater determinant containing two electrons with the same spin orbital would correspond to a wave function that is zero everywhere.
where n is the (true) principal quantum number, l the azimuthal quantum number, and f nl (r) is an oscillatory polynomial with n - l - 1 nodes. [5] Slater argued on the basis of previous calculations by Clarence Zener [ 6 ] that the presence of radial nodes was not required to obtain a reasonable approximation.
Pages for logged out editors learn more. Contributions; Talk; Slater orbitals