Search results
Results From The WOW.Com Content Network
Electron-beam processing involves irradiation (treatment) of products using a high-energy electron-beam accelerator. Electron-beam accelerators utilize an on-off technology, with a common design being similar to that of a cathode ray television. Electron-beam processing is used in industry primarily for three product modifications:
Electron beam therapy is performed using a medical linear accelerator.The same device can also be used to produce high energy photon beams. When electrons are required, the X-ray target is retracted out of the beam and the electron beam is collimated with a piece of apparatus known as an applicator or an additional collimating insert, constructed from a low melting point alloy.
The Therac-25 is a computer-controlled radiation therapy machine produced by Atomic Energy of Canada Limited (AECL) in 1982 after the Therac-6 and Therac-20 units (the earlier units had been produced in partnership with Compagnie générale de radiologie (CGR) of France).
Electron-beam machining is a process in which high-velocity electrons are concentrated into a narrow beam with a very high planar power density. The beam cross-section is then focused and directed toward the work piece, creating heat and vaporizing the material. Electron-beam machining can be used to accurately cut or bore a wide variety of metals.
Intraoperative electron radiation therapy is the application of electron radiation directly to the residual tumor or tumor bed during cancer surgery. [1] [2] Electron beams are useful for intraoperative radiation treatment because, depending on the electron energy, the dose falls off rapidly behind the target site, therefore sparing underlying healthy tissue.
Another approach is to use an electron beam to melt welding wire onto a surface to build up a part. [15] This is similar to the common 3D printing process of fused deposition modeling, but with metal, rather than plastics. With this process, an electron-beam gun provides the energy source used for melting metallic feedstock, which is typically ...
Megavoltage X-rays are produced by linear accelerators ("linacs") operating at voltages in excess of 1000 kV (1 MV) range, and therefore have an energy in the MeV range. The voltage in this case refers to the voltage used to accelerate electrons in the linear accelerator and indicates the maximum possible energy of the photons which are subsequently produced. [1]
Ion beam deposition (IBD) is a process of applying materials to a target through the application of an ion beam. [1] Ion beam deposition setup with mass separator. An ion beam deposition apparatus typically consists of an ion source, ion optics, and the deposition target. Optionally a mass analyzer can be incorporated. [2]