When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conservation of energy - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_energy

    This is an accepted version of this page This is the latest accepted revision, reviewed on 24 February 2025. Law of physics and chemistry This article is about the law of conservation of energy in physics. For sustainable energy resources, see Energy conservation. Part of a series on Continuum mechanics J = − D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}} Fick's laws of diffusion ...

  3. Nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission

    Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay.

  4. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    The energy released in a nuclear reaction can appear mainly in one of three ways: kinetic energy of the product particles (fraction of the kinetic energy of the charged nuclear reaction products can be directly converted into electrostatic energy); [5] emission of very high energy photons, called gamma rays;

  5. Energy conservation - Wikipedia

    en.wikipedia.org/wiki/Energy_conservation

    Energy conservation is the effort to reduce wasteful energy consumption by using fewer energy services. This can be done by using energy more effectively (using less and better sources of energy for continuous service) or changing one's behavior to use less and better source of service (for example, by driving vehicles which consume renewable ...

  6. Discovery of nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_nuclear_fission

    The fission process often produces gamma rays and releases a very large amount of energy, even by the energetic standards of radioactive decay. Scientists already knew about alpha decay and beta decay , but fission assumed great importance because the discovery that a nuclear chain reaction was possible led to the development of nuclear power ...

  7. Nuclear fission product - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission_product

    The sum of the atomic mass of the two atoms produced by the fission of one fissile atom is always less than the atomic mass of the original atom. This is because some of the mass is lost as free neutrons, and once kinetic energy of the fission products has been removed (i.e., the products have been cooled to extract the heat provided by the reaction), then the mass associated with this energy ...

  8. Spontaneous fission - Wikipedia

    en.wikipedia.org/wiki/Spontaneous_fission

    Total energy release across all products is approximately 200 MeV, [6]: 4 mostly observed as kinetic energy of the fission fragments, with the lighter fragment receiving the larger proportion of energy. [4]: 491–2 For a given decay path, the number of emitted neutrons is not consistent, and instead follows a gaussian distribution. The ...

  9. Fission barrier - Wikipedia

    en.wikipedia.org/wiki/Fission_Barrier

    At the saddle point, the rate of change of the Coulomb energy is equal to the rate of change of the nuclear surface energy. The formation and eventual decay of this transition state nucleus is the rate-determining step in the fission process and corresponds to the passage over an activation energy barrier to the fission reaction.