Search results
Results From The WOW.Com Content Network
In their 1997 Science paper, [B 2] Corry, Renn and Stachel quote the above passage and comment that "the arguments by which Einstein is exculpated are rather weak, turning on his slowness in fully grasping Hilbert's mathematics", and so they attempted to find more definitive evidence of the relationship between the work of Hilbert and Einstein ...
In his 1982 Einstein biography Subtle is the Lord, [B 3] Abraham Pais argued that Poincaré "comes near" to discovering special relativity (in his St. Louis lecture of September 1904, and the June 1905 paper), but eventually he failed, because in 1904 and also later in 1909, Poincaré treated length contraction as a third independent hypothesis ...
Although Kronecker had conceded, Hilbert would later respond to others' similar criticisms that "many different constructions are subsumed under one fundamental idea"—in other words (to quote Reid): "Through a proof of existence, Hilbert had been able to obtain a construction"; "the proof" (i.e. the symbols on the page) was "the object". [31]
Albert Einstein and Mileva Marić Einstein, 1912. Correspondence between Einstein and Marić, discovered and published in 1987, revealed that in early 1902, while Marić was visiting her parents in Novi Sad, she gave birth to a daughter, Lieserl. When Marić returned to Switzerland it was without the child, whose fate is uncertain.
1915 – David Hilbert independently introduces the Einstein-Hilbert action. [59] [56] Hilbert also recognizes the connection between the Einstein equations and the Gauss-Bonnet theorem. [60] 1916 – Karl Schwarzschild publishes the Schwarzschild metric about a month after Einstein published his general theory of relativity.
Winterberg published a refutation of these conclusions in 2004, observing that the galley proofs of Hilbert's articles had been tampered with — part of one page had been cut off. He argued that the removed part of the article contained the equations that Einstein later published and alleged that it was part of a "crude attempt by some unknown ...
The differences between Einstein–Cartan theory and general relativity (formulated either in terms of the Einstein–Hilbert action on Riemannian geometry or the Palatini action on Riemann–Cartan geometry) rest solely on what happens to the geometry inside matter sources. That is: "torsion does not propagate".
The Einstein–Hilbert action in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the (− + + +) metric signature , the gravitational part of the action is given as [ 1 ]