Search results
Results From The WOW.Com Content Network
Superheated steam was widely used in main line steam locomotives. Saturated steam has three main disadvantages in a steam engine: it contains small droplets of water which have to be periodically drained from the cylinders; being precisely at the boiling point of water for the boiler pressure in use, it inevitably condenses to some extent in the steam pipes and cylinders outside the boiler ...
Thermodynamic data is usually presented as a table or chart of function values for one mole of a substance (or in the case of the steam tables, one kg). A thermodynamic datafile is a set of equation parameters from which the numerical data values can be calculated.
The water comes (8), and goes into pipes (9). Warmed by the combustion of the fuel (came in 3), steam bubbles forming in these pipes, and arrives in the drum (7). Then steam goes (through 6) in smaller pipes (10) and being superheated here. At last, superheated steam goes to engine room (5).
A high-pressure steam locomotive is a steam locomotive with a boiler that operates at pressures well above what would be considered normal for other locomotives. Most locomotives operate with a steam pressure of 200 to 300 psi (1.38 to 2.07 MPa). [1] In the later years of steam, boiler pressures were typically 200 to 250 psi (1.38 to 1.72 MPa).
[citation needed] The steam passes through drying equipment inside the steam drum on to the superheater, a set of tubes in the furnace. Here the steam picks up more energy from hot flue gases outside the tubing, and its temperature is now superheated above the saturation temperature. The superheated steam is then piped through the main steam ...
In general, the steam economy is roughly proportional to the specific volumes of saturated and superheated steam at the pressure of generation. [Thus] the operating range of any given [steam] engine is increased; this is of especial benefit to tank engines and to all engines working in areas where fuel is expensive or water is scarce.
The easiest way to overcome this problem is by superheating the steam. On the T–s diagram above, state 3 is at a border of the two-phase region of steam and water, so after expansion the steam will be very wet. By superheating, state 3 will move to the right (and up) in the diagram and hence produce a drier steam after expansion.
A superheater is a device used to convert saturated steam or wet steam into superheated steam or dry steam. Superheated steam is used in steam turbines for electricity generation, in some steam engines, and in processes such as steam reforming. There are three types of superheaters: radiant, convection, and separately fired.