Search results
Results From The WOW.Com Content Network
The inertia group of w is the subgroup I w of G w consisting of elements σ such that σx ≡ x (mod m w) for all x in R w. In other words, I w consists of the elements of the decomposition group that act trivially on the residue field of w .
The decomposition groups in this case are both the trivial group {1}; indeed the automorphism σ switches the two primes (2 + 3i) and (2 − 3i), so it cannot be in the decomposition group of either prime. The inertia group, being a subgroup of the decomposition group, is also the trivial group. There are two residue fields, one for each prime,
In algebraic number theory, through completion, the study of ramification of a prime ideal can often be reduced to the case of local fields where a more detailed analysis can be carried out with the aid of tools such as ramification groups. In this article, a local field is non-archimedean and has finite residue field.
For example, if L is a Galois extension of a number field K, the ring of integers O L of L is a Galois module over O K for the Galois group of L/K (see Hilbert–Speiser theorem). If K is a local field, the multiplicative group of its separable closure is a module for the absolute Galois group of K and its study leads to local class field theory.
In mathematics, local class field theory, introduced by Helmut Hasse, [1] is the study of abelian extensions of local fields; here, "local field" means a field which is complete with respect to an absolute value or a discrete valuation with a finite residue field: hence every local field is isomorphic (as a topological field) to the real numbers R, the complex numbers C, a finite extension of ...
The failure of unique factorization is measured by the class number, commonly denoted h, the cardinality of the so-called ideal class group. This group is always finite. This group is always finite. The ring of integers O K {\displaystyle {\mathcal {O}}_{K}} possesses unique factorization if and only if it is a principal ring or, equivalently ...
The significance of being a Galois extension is that the extension has a Galois group and obeys the fundamental theorem of Galois theory. [a] A result of Emil Artin allows one to construct Galois extensions as follows: If E is a given field, and G is a finite group of automorphisms of E with fixed field F, then E/F is a Galois extension. [2]
The conductor of an abelian extension L/K of number fields can be defined, similarly to the local case, using the Artin map. Specifically, let θ : I m → Gal(L/K) be the global Artin map where the modulus m is a defining modulus for L/K; we say that Artin reciprocity holds for m if θ factors through the ray class group modulo m.