Search results
Results From The WOW.Com Content Network
The ferric chloride test is used to determine the presence of phenols in a given sample or compound (for instance natural phenols in a plant extract). Enols , hydroxamic acids , oximes, and sulfinic acids give positive results as well. [ 1 ]
The affinity of iron(III) for oxygen ligands was the basis of qualitative tests for phenols. Although superseded by spectroscopic methods, the ferric chloride test is a traditional colorimetric test. [26] The affinity of iron(III) for phenols is exploited in the Trinder spot test. [27]
The first example of an oxidative phenol coupling in synthetic chemistry can be traced to Julius Löwe’s 1868 synthesis of ellagic acid, accomplished by heating gallic acid with arsenic acid. [8] In the synthesis of complex organic compounds, oxidative phenol couplings are sometimes employed.
Total phenols (or antioxidant effect) can be measured using the Folin-Ciocalteu reaction. Results are typically expressed as gallic acid equivalents (GAE). Ferric chloride (FeCl 3) test is also a colorimetric assay. Lamaison and Carnet have designed a test for the determination of the total flavonoid content of a sample (AlCI 3 method). After ...
The reaction is used in a chemical test for the detection of aldehydes in combination with ferric chloride. In this test a few drops of aldehyde containing specimen is dissolved in ethanol, the sulfonamide is added together with some sodium hydroxide solution and then the solution is acidified to Congo red. An added drop of ferric chloride will ...
The free radicals generated by this process engage in secondary reactions. For example, the hydroxyl is a powerful, non-selective oxidant. [6] Oxidation of an organic compound by Fenton's reagent is rapid and exothermic and results in the oxidation of contaminants to primarily carbon dioxide and water.
Samples and phenolic standards are given acidic ferric chloride and ferricyanide, which is reduced to ferrocyanide by the phenols. The ferric chloride and ferrocyanide react to form Prussian blue. Comparing the absorbance at 700 nm of the samples to the standards allows for the determination of total phenols or polyphenols. [53] [54]
The reaction mechanism for chlorination of benzene is the same as bromination of benzene. Iron(III) bromide and iron(III) chloride become inactivated if they react with water, including moisture in the air. Therefore, they are generated by adding iron filings to bromine or chlorine. Here is the mechanism of this reaction: