Search results
Results From The WOW.Com Content Network
The use of fetal scalp blood testing originated in Germany in 1961 and required 0.25 mL of blood drawn from the fetus. [1] As one of the first methods of monitoring fetal wellbeing during labor, there were many disadvantages including the need for at least 3 cm dilation of the mother and extreme precision from the physician performing the procedure. [9]
[42] [43] As a result, carbon dioxide levels in the blood decrease and the pH of the blood becomes more alkaline (i.e. the pH is higher and more basic). This causes the maternal kidneys to excrete bicarbonate to compensate for this change in pH. The combined effect of the decreased serum concentrations of both carbon dioxide and bicarbonate ...
Metabolic acidosis can lead to acidemia, which is defined as arterial blood pH that is lower than 7.35. [6] Acidemia and acidosis are not mutually exclusive – pH and hydrogen ion concentrations also depend on the coexistence of other acid-base disorders; therefore, pH levels in people with metabolic acidosis can range from low to high.
Chr. 11 p15.4. Fetal hemoglobin, or foetal haemoglobin (also hemoglobin F, HbF, or α2γ2) is the main oxygen carrier protein in the human fetus. Hemoglobin F is found in fetal red blood cells, and is involved in transporting oxygen from the mother's bloodstream to organs and tissues in the fetus. It is produced at around 6 weeks of pregnancy ...
Acid–base imbalance is an abnormality of the human body's normal balance of acids and bases that causes the plasma pH to deviate out of the normal range (7.35 to 7.45). In the fetus, the normal range differs based on which umbilical vessel is sampled (umbilical vein pH is normally 7.25 to 7.45; umbilical artery pH is normally 7.18 to 7.38). [1]
Acid–base and blood gases are among the few blood constituents that exhibit substantial difference between arterial and venous values. [6] Still, pH, bicarbonate and base excess show a high level of inter-method reliability between arterial and venous tests, so arterial and venous values are roughly equivalent for these. [44]
Winters's formula, [1] named after R. W. Winters, [2] is a formula used to evaluate respiratory compensation when analyzing acid-base disorders in the presence of metabolic acidosis. [3][4] It can be given as: where HCO3− is given in units of mEq/L and P CO2 will be in units of mmHg.
Respiratory acidosis. Respiratory acidosis is a state in which decreased ventilation (hypoventilation) increases the concentration of carbon dioxide in the blood and decreases the blood's pH (a condition generally called acidosis). Carbon dioxide is produced continuously as the body's cells respire, and this CO2 will accumulate rapidly if the ...