When.com Web Search

  1. Ads

    related to: derivative of log functions practice test 1 explanations answers 10 12 24

Search results

  1. Results From The WOW.Com Content Network
  2. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    Calculus. In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] The technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself.

  3. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    Calculus. In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula where is the derivative of f. [1] Intuitively, this is the infinitesimal relative change in f; that is, the infinitesimal absolute change in f, namely scaled by the current value of f.

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    1.1.2 Intuitive (geometric) explanation. ... Toggle Derivatives of exponential and logarithmic functions subsection. 3.1 Logarithmic derivatives.

  5. Reciprocal rule - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_rule

    Reciprocal rule. In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f. The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents. Also, one can readily deduce the quotient rule from the ...

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    ln (r) is the standard natural logarithm of the real number r. Arg (z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg (x + iy) = atan2 (y, x). Log (z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].

  7. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...

  8. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Functions differing by only a constant have the same derivative, and it can be shown that the antiderivative of a given function is a family of functions differing only by a constant. [ 47 ] : 326 Since the derivative of the function y = x 2 + C , where C is any constant, is y′ = 2 x , the antiderivative of the latter is given by:

  9. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    A function f of x, differentiated once in Lagrange's notation. One of the most common modern notations for differentiation is named after Joseph Louis Lagrange, even though it was actually invented by Euler and just popularized by the former. In Lagrange's notation, a prime mark denotes a derivative.