When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    Chemiosmosis is the movement of ions across a semipermeable membrane bound structure, down their electrochemical gradient. An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H +) across a membrane during cellular respiration or photosynthesis. An ion gradient has potential energy and can be ...

  3. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    The overall structure and the catalytic mechanism of the chloroplast ATP synthase are almost the same as those of the bacterial enzyme. However, in chloroplasts, the proton motive force is generated not by respiratory electron transport chain but by primary photosynthetic proteins. The synthase has a 40-aa insert in the gamma-subunit to inhibit ...

  4. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    In all living organisms, a series of redox reactions is used to produce a transmembrane electrochemical potential gradient, or a so-called proton motive force (pmf). Redox reactions are chemical reactions in which electrons are transferred from a donor molecule to an acceptor molecule. The underlying force driving these reactions is the Gibbs ...

  5. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    The proton motive force and ATP production can be maintained by intracellular acidosis. [89] Cytosolic protons that have accumulated with ATP hydrolysis and lactic acidosis can freely diffuse across the mitochondrial outer-membrane and acidify the inter-membrane space, hence directly contributing to the proton motive force and ATP production.

  6. Symporter - Wikipedia

    en.wikipedia.org/wiki/Symporter

    Symporter. A symporter is an integral membrane protein that is involved in the transport of two (or more) different molecules across the cell membrane in the same direction. The symporter works in the plasma membrane and molecules are transported across the cell membrane at the same time, and is, therefore, a type of cotransporter.

  7. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    The "machinery" is similar to that in mitochondria except that light energy is used to pump protons across a membrane to produce a proton-motive force. ATP synthase then ensues exactly as in oxidative phosphorylation. [28] Some of the ATP produced in the chloroplasts is consumed in the Calvin cycle, which produces triose sugars.

  8. Respiratory complex I - Wikipedia

    en.wikipedia.org/wiki/Respiratory_complex_I

    The equilibrium dynamics of Complex I are primarily driven by the quinone redox cycle. In conditions of high proton motive force (and accordingly, a ubiquinol-concentrated pool), the enzyme runs in the reverse direction. Ubiquinol is oxidized to ubiquinone, and the resulting released protons reduce the proton motive force. [14]

  9. Proton - Wikipedia

    en.wikipedia.org/wiki/Proton

    A proton is a stable subatomic particle, symbol. p. , H +, or 1 H + with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with a mass of approximately one atomic mass ...