When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Axiomatic foundations of topological spaces - Wikipedia

    en.wikipedia.org/wiki/Axiomatic_foundations_of...

    A topological space is a set together with a collection of subsets of satisfying: [3]. The empty set and are in .; The union of any collection of sets in is also in .; The intersection of any pair of sets in is also in . Equivalently, the intersection of any finite collection of sets in is also in .

  3. Topological space - Wikipedia

    en.wikipedia.org/wiki/Topological_space

    In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...

  4. Eilenberg–Steenrod axioms - Wikipedia

    en.wikipedia.org/wiki/Eilenberg–Steenrod_axioms

    The axiomatic approach, which was developed in 1945, allows one to prove results, such as the Mayer–Vietoris sequence, that are common to all homology theories satisfying the axioms. [ 1 ] If one omits the dimension axiom (described below), then the remaining axioms define what is called an extraordinary homology theory .

  5. Separation axiom - Wikipedia

    en.wikipedia.org/wiki/Separation_axiom

    It's not enough for elements of a topological space to be distinct (that is, unequal); we may want them to be topologically distinguishable. Similarly, it's not enough for subsets of a topological space to be disjoint; we may want them to be separated (in any of various ways). The separation axioms all say, in one way or another, that points or ...

  6. General topology - Wikipedia

    en.wikipedia.org/wiki/General_topology

    In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (,) is said to be metrizable if there is a metric : [,) such that the topology induced by d is . Metrization theorems are theorems that give sufficient conditions for a topological space to ...

  7. Named set theory - Wikipedia

    en.wikipedia.org/wiki/Named_set_theory

    A fiber bundle B is a named set (E, p, B) where the topological space E is the space of B; the topological space B the base of B; and p is a topological projection of E onto B such that every point in B has a neighborhood U such that p −1 (b) = F for all points b from B and p −1 (U) is homeomorphic to the direct product U × F where F is ...

  8. Kuratowski closure axioms - Wikipedia

    en.wikipedia.org/wiki/Kuratowski_closure_axioms

    He refers to topological spaces which satisfy all five axioms as T 1-spaces in contrast to the more general spaces which only satisfy the four listed axioms. Indeed, these spaces correspond exactly to the topological T 1 -spaces via the usual correspondence (see below).

  9. Timeline of manifolds - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_manifolds

    Foundation of category theory: axioms for categories, functors, and natural transformations. 1945: Norman Steenrod–Samuel Eilenberg: Eilenberg–Steenrod axioms for homology and cohomology. 1945: Jean Leray: Founds sheaf theory. For Leray a sheaf was a map assigning a module or a ring to a closed subspace of a topological space.