Search results
Results From The WOW.Com Content Network
The hyperbolic distance between two points on the hyperboloid can then be identified with the relative rapidity between the two corresponding observers. The model generalizes directly to an additional dimension: a hyperbolic 3-space three-dimensional hyperbolic geometry relates to Minkowski 4-space.
A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation. A hyperboloid is a quadric surface , that is, a surface defined as the zero set of a polynomial of degree two in three variables.
A hyperbolic geometric graph (HGG) or hyperbolic geometric network (HGN) is a special type of spatial network where (1) latent coordinates of nodes are sprinkled according to a probability density function into a hyperbolic space of constant negative curvature and (2) an edge between two nodes is present if they are close according to a function of the metric [1] [2] (typically either a ...
Another simple example is given by the infinite cyclic group : the Cayley graph of with respect to the generating set {} is a line, so all triangles are line segments and the graph is -hyperbolic. It follows that any group which is virtually cyclic (contains a copy of Z {\displaystyle \mathbb {Z} } of finite index) is also hyperbolic, for ...
In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S + of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m ...
Hyperbolic paraboloid A model of an elliptic hyperboloid of one sheet A monkey saddle. A saddle surface is a smooth surface containing one or more saddle points.. Classical examples of two-dimensional saddle surfaces in the Euclidean space are second order surfaces, the hyperbolic paraboloid = (which is often referred to as "the saddle surface" or "the standard saddle surface") and the ...
Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]
Subsets of the theory of hyperbolic groups can be used to give more examples of hyperbolic spaces, for instance the Cayley graph of a small cancellation group. It is also known that the Cayley graphs of certain models of random groups (which is in effect a randomly-generated infinite regular graph) tend to be hyperbolic very often.