Search results
Results From The WOW.Com Content Network
The goal of loop unwinding is to increase a program's speed by reducing or eliminating instructions that control the loop, such as pointer arithmetic and "end of loop" tests on each iteration; [2] reducing branch penalties; as well as hiding latencies, including the delay in reading data from memory. [3]
For loop illustration, from i=0 to i=2, resulting in data1=200. A for-loop statement is available in most imperative programming languages. Even ignoring minor differences in syntax, there are many differences in how these statements work and the level of expressiveness they support. Generally, for-loops fall into one of four categories:
/* precondition: x 2 = 0 */ LOOP x 1 DO x 0 := 0; LOOP x 2 DO x 0 := x 0 + 1 END; x 2 := x 2 + 1 END. This program can be used as a subroutine in other LOOP programs. The LOOP syntax can be extended with the following statement, equivalent to calling the above as a subroutine: x 0 := x 1 ∸ 1 Remark: Again one has to mind the side effects.
The post-increment and post-decrement operators increase (or decrease) the value of their operand by 1, but the value of the expression is the operand's value prior to the increment (or decrement) operation. In languages where increment/decrement is not an expression (e.g., Go), only one version is needed (in the case of Go, post operators only).
A conditional loop has the potential to become an infinite loop when nothing in the loop's body can affect the outcome of the loop's conditional statement. However, infinite loops can sometimes be used purposely, often with an exit from the loop built into the loop implementation for every computer language , but many share the same basic ...
The values V i at earlier times i = n −1, n − 2, ..., 2, 1 can be found by working backwards, using a recursive relationship called the Bellman equation. For i = 2, ..., n , V i −1 at any state y is calculated from V i by maximizing a simple function (usually the sum) of the gain from a decision at time i − 1 and the function V i at the ...
Do while loops check the condition after the block of code is executed. This control structure can be known as a post-test loop. This means the do-while loop is an exit-condition loop. However a while loop will test the condition before the code within the block is executed.
Iterative deepening prevents this loop and will reach the following nodes on the following depths, assuming it proceeds left-to-right as above: 0: A; 1: A, B, C, E (Iterative deepening has now seen C, when a conventional depth-first search did not.) 2: A, B, D, F, C, G, E, F (It still sees C, but that it came later.