Search results
Results From The WOW.Com Content Network
The other aliphatic-halogen bonds are weaker, their reactivity increasing down the periodic table. They are usually more chemically reactive than aliphatic C-H bonds. As a consequence, the most common halogen substitutions are the less reactive aromatic fluorine and chlorine groups.
The addition of halogens to alkenes proceeds via intermediate halonium ions. In special cases, such intermediates have been isolated. [5] Bromination is more selective than chlorination because the reaction is less exothermic. Illustrative of the bromination of an alkene is the route to the anesthetic halothane from trichloroethylene: [6]
Most aliphatic compounds are flammable, allowing the use of hydrocarbons as fuel, such as methane in natural gas for stoves or heating; butane in torches and lighters; various aliphatic (as well as aromatic) hydrocarbons in liquid transportation fuels like petrol/gasoline, diesel, and jet fuel; and other uses such as ethyne (acetylene) in welding.
Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is aliphatic or aromatic. Detailed understanding of a reaction type helps to ...
Haloalkanes containing halogens other than fluorine are more reactive than the parent alkanes—it is this reactivity that is the basis of most controversies. Many are alkylating agents , with primary haloalkanes and those containing heavier halogens being the most active (fluoroalkanes do not act as alkylating agents under normal conditions).
By the same token, however, since iodine has the lowest ionisation energy among the halogens and is the most easily oxidised of them, it has a more significant cationic chemistry and its higher oxidation states are rather more stable than those of bromine and chlorine, for example in iodine heptafluoride. [1]
Halogenation of benzene where X is the halogen, catalyst represents the catalyst (if needed) and HX represents the protonated base. A few types of aromatic compounds, such as phenol, will react without a catalyst, but for typical benzene derivatives with less reactive substrates, a Lewis acid is required as a catalyst.
The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: . 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g). Metals in the middle of the reactivity series, such as iron, will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt, such as iron(II) sulfate: