When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mean absolute error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_error

    The MAE is conceptually simpler and also easier to interpret than RMSE: it is simply the average absolute vertical or horizontal distance between each point in a scatter plot and the Y=X line. In other words, MAE is the average absolute difference between X and Y.

  3. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    In bioinformatics, the root mean square deviation of atomic positions is the measure of the average distance between the atoms of superimposed proteins. In structure based drug design, the RMSD is a measure of the difference between a crystal conformation of the ligand conformation and a docking prediction.

  4. Mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_percentage_error

    Their difference is divided by the actual value A t. The absolute value of this ratio is summed for every forecasted point in time and divided by the number of fitted points n . MAPE in regression problems

  5. Taylor diagram - Wikipedia

    en.wikipedia.org/wiki/Taylor_diagram

    The standard deviation of the observed field () is side a, the standard deviation of the test field () is side b, the centered RMS difference (centered RMS difference is the mean-removed RMS difference, and is equivalent to the standard deviation of the model errors [17]) between the two fields (E′) is side c, and the cosine of the angle ...

  6. Symmetric mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Symmetric_mean_absolute...

    The absolute difference between A t and F t is divided by half the sum of absolute values of the actual value A t and the forecast value F t. The value of this calculation is summed for every fitted point t and divided again by the number of fitted points n.

  7. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).

  8. Structural similarity index measure - Wikipedia

    en.wikipedia.org/wiki/Structural_similarity...

    The resultant SSIM index is a decimal value between -1 and 1, where 1 indicates perfect similarity, 0 indicates no similarity, and -1 indicates perfect anti-correlation. For an image, it is typically calculated using a sliding Gaussian window of size 11x11 or a block window of size 8×8.

  9. Mean absolute scaled error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_scaled_error

    Asymptotic normality of the MASE: The Diebold-Mariano test for one-step forecasts is used to test the statistical significance of the difference between two sets of forecasts. [ 5 ] [ 6 ] [ 7 ] To perform hypothesis testing with the Diebold-Mariano test statistic, it is desirable for D M ∼ N ( 0 , 1 ) {\displaystyle DM\sim N(0,1)} , where D M ...