Search results
Results From The WOW.Com Content Network
The impulse delivered by a varying force is the integral of the force F with respect to time: =. The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s).
As an action potential (nerve impulse) travels down an axon there is a change in electric polarity across the membrane of the axon. In response to a signal from another neuron, sodium- (Na +) and potassium- (K +)–gated ion channels open and close as the membrane reaches its threshold potential.
The electric field was formally defined as the force exerted per unit charge, but the concept of potential allows for a more useful and equivalent definition: the electric field is the local gradient of the electric potential. Usually expressed in volts per metre, the vector direction of the field is the line of greatest slope of potential, and ...
The impulse response and step response are transient responses to a specific input (an impulse and a step, respectively). In electrical engineering specifically, the transient response is the circuit’s temporary response that will die out with time. [1]
Impulse function, a mathematical function of an infinitely high amplitude and infinitesimal duration; Impulse response, a system's output when presented with the impulse function in Electrical Engineering; Impulse (psychology), a wish or urge, particularly a sudden one; Impulsion, a thrust of a horse
It employs pacemaker cells that produce electrical impulses, known as cardiac action potentials, which control the rate of contraction of the cardiac muscle, that is, the heart rate. In most humans, these cells are concentrated in the sinoatrial (SA) node, the primary pacemaker, which regulates the heart’s sinus rhythm.
An impulse (action potential) that originates from the SA node at a relative rate of 60–100 bpm is known as a normal sinus rhythm. If SA nodal impulses occur at a rate less than 60 bpm, the heart rhythm is known as sinus bradycardia. If SA nodal impulses occur at a rate exceeding 100 bpm, the consequent rapid heart rate is sinus tachycardia ...
Electrical impulses are sent through one electrode to stimulate the nerve. The second electrode records the impulse sent through the nerve as a result of stimulation. The time difference between stimulation from the first electrode and pickup by the downstream electrode is known as the latency. Nerve conduction latencies are typically on the ...