Ads
related to: angle between stem and branch lines graph theory worksheet 6th
Search results
Results From The WOW.Com Content Network
A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. [2] A directed tree, [3] oriented tree, [4] [5] polytree, [6] or singly connected network [7] is a directed acyclic graph (DAG) whose underlying undirected graph is ...
Branch decomposition of a grid graph, showing an e-separation.The separation, the decomposition, and the graph all have width three. In graph theory, a branch-decomposition of an undirected graph G is a hierarchical clustering of the edges of G, represented by an unrooted binary tree T with the edges of G as its leaves.
Geometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are ...
In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G).
RAC drawings of the complete graph K 5 and the complete bipartite graph K 3,4. In graph drawing, a RAC drawing of a graph is a drawing in which the vertices are represented as points, the edges are represented as straight line segments or polylines, at most two edges cross at any point, and when two edges cross they do so at right angles to each other.
The duality between acyclic and totally cyclic orientations of planar graphs extends in this form to nonplanar graphs as well: the Tutte polynomial of the dual graph of a planar graph is obtained by swapping the arguments of , and the number of totally cyclic orientations of a graph is (,), also obtained by swapping the arguments of the formula ...
Topological graph theory Topological K-theory Topos theory Toric geometry Transcendental number theory a branch of number theory that revolves around the transcendental numbers. Transformation geometry Trigonometry the study of triangles and the relationships between the length of their sides, and the angles between them.
In graph theory, the blossom algorithm is an algorithm for constructing maximum matchings on graphs. The algorithm was developed by Jack Edmonds in 1961, [ 1 ] and published in 1965. [ 2 ] Given a general graph G = ( V , E ) , the algorithm finds a matching M such that each vertex in V is incident with at most one edge in M and | M | is maximized.