Ads
related to: hard questions on probability
Search results
Results From The WOW.Com Content Network
There are many longstanding unsolved problems in mathematics for which a solution has still not yet been found. The notable unsolved problems in statistics are generally of a different flavor; according to John Tukey, [1] "difficulties in identifying problems have delayed statistics far more than difficulties in solving problems."
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .
The Boy or Girl paradox surrounds a set of questions in probability theory, which are also known as The Two Child Problem, [1] Mr. Smith's Children [2] and the Mrs. Smith Problem. The initial formulation of the question dates back to at least 1959, when Martin Gardner featured it in his October 1959 "Mathematical Games column" in Scientific ...
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
Comparing p(n) = probability of a birthday match with q(n) = probability of matching your birthday. In the birthday problem, neither of the two people is chosen in advance. By contrast, the probability q(n) that at least one other person in a room of n other people has the same birthday as a particular person (for example, you) is given by
Pages in category "Probability problems" The following 31 pages are in this category, out of 31 total. This list may not reflect recent changes. B. Balls into bins ...