Search results
Results From The WOW.Com Content Network
Continuous-wave radar (CW radar) is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. [1] Individual objects can be detected using the Doppler effect , which causes the received signal to have a different frequency from the transmitted signal ...
Monostatic monopulse-Doppler radar sensors offer advantages over FMCW radars, such as: Half-duplex: Pulse-Doppler radar sensors are half-duplex, while FMCW radar sensors are full-duplex. Hence, pulse-Doppler provide higher isolation between transmitter and receiver, increasing the receiver's dynamic range (DR) and the range detection considerably.
The radar mile is the time it takes for a radar pulse to travel one nautical mile, reflect off a target, and return to the radar antenna. Since a nautical mile is defined as 1,852 m, then dividing this distance by the speed of light (299,792,458 m/s), and then multiplying the result by 2 yields a result of 12.36 μs in duration.
The rangefinder is a Doppler radar using frequency-modulated continuous-wave FMCW [2] technology to emit a radar signal and can be set to trigger two types of air-bursts, one being a near surface burst to combat standing targets and the other being a higher proximity burst downward onto prone or dug-in targets. [3]
In radar or sonar applications, linear chirps are the most typically used signals to achieve pulse compression. The pulse being of finite length, the amplitude is a rectangle function . If the transmitted signal has a duration T {\displaystyle T} , begins at t = 0 {\displaystyle t=0} and linearly sweeps the frequency band Δ f {\displaystyle ...
Radar echoes, showing a representation of the carrier. Pulse width also determines the radar's dead zone at close ranges. While the radar transmitter is active, the receiver input is blanked to avoid the amplifiers being swamped (saturated) or, (more likely), damaged.
A Doppler radar is a specialized radar that uses the Doppler effect to produce ... though distinct from mainstream Doppler radar, was based on Doppler principles, ...
Ways of reducing the profile of a radar include using wider bandwidth (wideband, Ultra-wideband), frequency hopping, using FMCW, and using only the minimum power required for the task. Using pulse compression also reduces the probability of detection, since the peak transmitted power is lower while the range and resolution is the same.