Search results
Results From The WOW.Com Content Network
The area of a triangle then falls out as the case of a polygon with three sides. While the line integral method has in common with other coordinate-based methods the arbitrary choice of a coordinate system, unlike the others it makes no arbitrary choice of vertex of the triangle as origin or of side as base.
A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . Letting be the semiperimeter of the triangle, = (+ +), the area is [1]
The excentral triangle of a reference triangle has vertices at the centers of the reference triangle's excircles. Its sides are on the external angle bisectors of the reference triangle (see figure at top of page ).
The tangential triangle of a reference triangle (other than a right triangle) is the triangle whose sides are on the tangent lines to the reference triangle's circumcircle at its vertices. [ 64 ] As mentioned above, every triangle has a unique circumcircle, a circle passing through all three vertices, whose center is the intersection of the ...
The basic triangle on a unit sphere. Both vertices and angles at the vertices of a triangle are denoted by the same upper case letters A, B, and C. Sides are denoted by lower-case letters: a, b, and c. The sphere has a radius of 1, and so the side lengths and lower case angles are equivalent (see arc length).
The area (A) of a regular heptagon of side length a is given by: = . This can be seen by subdividing the unit-sided heptagon into seven triangular "pie slices" with vertices at the center and at the heptagon's vertices, and then halving each triangle using the apothem as the common side.
This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.
Hyperbolic triangles have some properties that are the opposite of the properties of triangles in spherical or elliptic geometry: The angle sum of a triangle is less than 180°. The area of a triangle is proportional to the deficit of its angle sum from 180°. Hyperbolic triangles also have some properties that are not found in other geometries: