Search results
Results From The WOW.Com Content Network
Examples include e and π. Trigonometric number: Any number that is the sine or cosine of a rational multiple of π. Quadratic surd: A root of a quadratic equation with rational coefficients. Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number.
def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.
For example: "All humans are mortal, and Socrates is a human. ∴ Socrates is mortal." ∵ Abbreviation of "because" or "since". Placed between two assertions, it means that the first one is implied by the second one. For example: "11 is prime ∵ it has no positive integer factors other than itself and one." ∋ 1. Abbreviation of "such that".
Examples of unexpected applications of mathematical theories can be found in many areas of mathematics. A notable example is the prime factorization of natural numbers that was discovered more than 2,000 years before its common use for secure internet communications through the RSA cryptosystem. [127]
Aristotle also thought that quantity alone does not distinguish mathematics from sciences like physics; in his view, abstraction and studying quantity as a property "separable in thought" from real instances set mathematics apart. [5] Auguste Comte's definition tried to explain the role of mathematics in coordinating phenomena in all other ...
For example, if the variance of a random variable is said to be finite, this implies it is a non-negative real number, possibly zero. In some contexts though, for example in "a small but finite amplitude", zero and infinitesimals are meant to be excluded.
Some definitions restrict arithmetic to the field of numerical calculations. [6] When understood in a wider sense, it also includes the study of how the concept of numbers developed, the analysis of properties of and relations between numbers, and the examination of the axiomatic structure of arithmetic operations.
For example, an ordering imposes a rigid form, shape, or topology on the set, and if a set has both a topology feature and a group feature, such that these two features are related in a certain way, then the structure becomes a topological group.