Ads
related to: axial resolution confocal microscopy- Live Cell Imaging Basics
Essential Knowledge Briefing.
Download free eBook here
- Live Cell Plate Reading
Multimode reader with incubation,
shaking, gas modules. Learn More
- Vessel Holders & Plates
Wide range of accessories
custom configurations available
- Find The Right EVOS Model
Easily compare systems
in-depth product details
- Live Cell Imaging Basics
Search results
Results From The WOW.Com Content Network
This limits the axial resolution of the microscope. One technique of overcoming this is 4Pi microscopy where incident and or emitted light are allowed to interfere from both above and below the sample to reduce the volume of the ellipsoid. An alternative technique is confocal theta microscopy. In this technique the cone of illuminating light ...
A 4Pi microscope is a laser scanning fluorescence microscope with an improved axial resolution.With it the typical range of the axial resolution of 500–700 nm can be improved to 100–150 nm, which corresponds to an almost spherical focal spot with 5–7 times less volume than that of standard confocal microscopy.
An example of an experimentally derived point spread function from a confocal microscope using a 63x 1.4NA oil objective. It was generated using Huygens Professional deconvolution software. Shown are views in xz, xy, yz and a 3D representation. In microscopy, experimental determination of PSF requires sub-resolution (point-like) radiating sources.
In fluorescence microscopy the excitation and emission are typically on different wavelengths. In total internal reflection fluorescence microscopy a thin portion of the sample located immediately on the cover glass is excited with an evanescent field, and recorded with a conventional diffraction-limited objective, improving the axial resolution.
Compared to full sample illumination, confocal microscopy gives slightly higher lateral resolution and significantly improves optical sectioning (axial resolution). Confocal microscopy is, therefore, commonly used where 3D structure is important.
He was an independent inventor for a short period thereafter working on improving depth (axial) resolution in confocal microscopy, which became later known as the 4Pi microscope. Resolution is the possibility to separate two similar objects in close proximity and is therefore the most important property of a microscope. From 1991 to 1993, Hell ...
A 4Pi microscope is a laser-scanning fluorescence microscope with an improved axial resolution. The typical value of 500–700 nm can be improved to 100–150 nm, which corresponds to an almost spherical focal spot with 5–7 times less volume than that of standard confocal microscopy.
This formula is suitable for confocal microscopy, but is also used in traditional microscopy. In confocal laser-scanned microscopes, the full-width half-maximum (FWHM) of the point spread function is often used to avoid the difficulty of measuring the Airy disc. [1] This, combined with the rastered illumination pattern, results in better ...