Search results
Results From The WOW.Com Content Network
Industrially, sodium chlorate is produced by the electrolysis of concentrated sodium chloride solutions. All other processes are obsolete. The sodium chlorate process is not to be confused with the chloralkali process, which is an industrial process for the electrolytic production of sodium hydroxide and chlorine gas.
An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula . For example, a solution of table salt , also known as sodium chloride (NaCl), in water would be represented as Na + (aq) + Cl − (aq) .
Electrolytic cell producing chlorine (Cl 2) and sodium hydroxide (NaOH) from a solution of common salt. For example, in a solution of ordinary table salt (sodium chloride, NaCl) in water, the cathode reaction will be 2 H 2 O + 2e − → 2 OH − + H 2. and hydrogen gas will bubble up; the anode reaction is 2 NaCl → 2 Na + + Cl 2 + 2e −
In chemistry, a strong electrolyte is a solute that completely, or almost completely, ionizes or dissociates in a solution. These ions are good conductors of electric current in the solution. Originally, a "strong electrolyte" was defined as a chemical compound that, when in aqueous solution , is a good conductor of electricity.
A supporting electrolyte, in electrochemistry, according to an IUPAC definition, [1] is an electrolyte containing chemical species that are not electroactive (within the range of potentials used) and which has an ionic strength and conductivity much larger than those due to the electroactive species added to the electrolyte.
The salt can be recovered by evaporation of the solvent. An electrolyte refers to a substance that contains free ions and can be used as an electrically conductive medium. Most of the solute does not dissociate in a weak electrolyte, whereas in a strong electrolyte a higher ratio of solute dissociates to form free ions.
The component ions in a salt can be either inorganic, such as chloride (Cl −), or organic, such as acetate (CH 3 COO −). Each ion can be either monatomic (termed simple ion), such as sodium (Na +) and chloride (Cl −) in sodium chloride, or polyatomic, such as ammonium (NH + 4) and carbonate (CO 2− 3) ions in ammonium carbonate.
A base which has more affinity for protons than the limiting base cannot exist in solution, as it will react with the solvent. For example, the limiting acid in liquid ammonia is the ammonium ion, NH 4 + which has a pK a value in water of 9.25. The limiting base is the amide ion, NH 2 −.