Search results
Results From The WOW.Com Content Network
An array data structure can be mathematically modeled as an abstract data structure (an abstract array) with two operations get(A, I): the data stored in the element of the array A whose indices are the integer tuple I. set(A, I, V): the array that results by setting the value of that element to V. These operations are required to satisfy the ...
The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.
For a square N×N matrix A n,m = A(n,m), in-place transposition is easy because all of the cycles have length 1 (the diagonals A n,n) or length 2 (the upper triangle is swapped with the lower triangle). Pseudocode to accomplish this (assuming zero-based array indices) is: for n = 0 to N - 1 for m = n + 1 to N swap A(n,m) with A(m,n)
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
even = x (2:: 2); odd = x (:: 2); is how one would use Fortran to create arrays from the even and odd entries of an array. Another common use of vectorized indices is a filtering operation.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.
a = [3, 1, 5, 7] // assign an array to the variable a a [0.. 1] // return the first two elements of a a [.. 1] // return the first two elements of a: the zero can be omitted a [2..] // return the element 3 till last one a [[0, 3]] // return the first and the fourth element of a a [[0, 3]] = [100, 200] // replace the first and the fourth element ...