Search results
Results From The WOW.Com Content Network
A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation. A hyperboloid is a quadric surface , that is, a surface defined as the zero set of a polynomial of degree two in three variables.
A hyperboloid of one sheet is a doubly ruled surface. Hyperbolic paraboloid. Hyperbolic paraboloid. If the two directrices in (CD) are the lines ...
One can take the hyperboloid to represent the events (positions in spacetime) that various inertially moving observers, starting from a common event, will reach in a fixed proper time. The hyperbolic distance between two points on the hyperboloid can then be identified with the relative rapidity between the two corresponding observers.
Hyperboloid structures are architectural structures designed using a hyperboloid in one sheet. Often these are tall structures, such as towers, where the hyperboloid geometry's structural strength is used to support an object high above the ground.
The definition of a projective quadric in a real projective space (see above) can be formally adapted by defining a projective quadric in an n-dimensional projective space over a field. In order to omit dealing with coordinates, a projective quadric is usually defined by starting with a quadratic form on a vector space.
Points on the hyperboloid surface (the "shell") are solutions to the equation. Mass shell is a synonym for mass hyperboloid, meaning the hyperboloid in energy–momentum space describing the solutions to the equation:
Hyperbolic paraboloid A model of an elliptic hyperboloid of one sheet A monkey saddle. A saddle surface is a smooth surface containing one or more saddle points.. Classical examples of two-dimensional saddle surfaces in the Euclidean space are second order surfaces, the hyperbolic paraboloid = (which is often referred to as "the saddle surface" or "the standard saddle surface") and the ...
This page is a list of hyperboloid structures. These were first applied in architecture by Russian engineer Vladimir Shukhov (1853–1939). Shukhov built his first example as a water tower ( hyperbolic shell ) for the 1896 All-Russian Exposition .