Search results
Results From The WOW.Com Content Network
(the apparent motion of the wave due to the successive oscillations of particles or fields about their equilibrium positions) propagates at the phase and group velocities parallel or antiparallel to the propagation direction, which is common to longitudinal and transverse waves.
Sound can propagate through a medium such as air, water and solids as longitudinal waves and also as a transverse wave in solids. The sound waves are generated by a sound source, such as the vibrating diaphragm of a stereo speaker. The sound source creates vibrations in the surrounding medium. As the source continues to vibrate the medium, the ...
The light produced is of lower intensity than the light produced by typical sonoluminescence and is not visible to the naked eye. The light and heat produced by the bubble may have no direct significance, as it is the shockwave produced by the rapidly collapsing bubble which these shrimp use to stun or kill prey.
"Longitudinal waves" and "transverse waves" have been abbreviated by some authors as "L-waves" and "T-waves", respectively, for their own convenience. [1] While these two abbreviations have specific meanings in seismology (L-wave for Love wave [2] or long wave [3]) and electrocardiography (see T wave), some authors chose to use "ℓ-waves" (lowercase 'L') and "t-waves" instead, although they ...
Transverse waves are contrasted with longitudinal waves, where the oscillations occur in the direction of the wave. The standard example of a longitudinal wave is a sound wave or "pressure wave" in gases, liquids, or solids, whose oscillations cause compression and expansion of the material through which the wave is propagating. Pressure waves ...
Mechanical waves can be produced only in media which possess elasticity and inertia. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves. Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. Like all waves, mechanical waves transport energy.
A century later, Thomas Young [a] and Augustin-Jean Fresnel revived the wave theory of light when they pointed out that light could be a transverse wave rather than a longitudinal wave; the polarization of a transverse wave (like Newton's "sides" of light) could explain birefringence, and in the wake of a series of experiments on diffraction ...
The speed of sound in the crystal depends on the mass of the atoms, the strength of their interaction, the pressure on the system, and the polarisation of the spin wave (longitudinal or transverse), among others. For the following, the speed of sound is assumed to be the same for any polarisation, although this limits the applicability of the ...