When.com Web Search

  1. Ad

    related to: orthogonal projection onto a line formula examples

Search results

  1. Results From The WOW.Com Content Network
  2. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .

  3. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The projection of a onto b is often written as ⁡ or a ∥b. The vector component or vector resolute of a perpendicular to b, sometimes also called the vector rejection of a from b (denoted ⁡ or a ⊥b), [1] is the orthogonal projection of a onto the plane (or, in general, hyperplane) that is orthogonal to b.

  4. Orthographic projection - Wikipedia

    en.wikipedia.org/wiki/Orthographic_projection

    Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.

  5. Projection matrix - Wikipedia

    en.wikipedia.org/wiki/Projection_matrix

    A matrix, has its column space depicted as the green line. The projection of some vector onto the column space of is the vector . From the figure, it is clear that the closest point from the vector onto the column space of , is , and is one where we can draw a line orthogonal to the column space of .

  6. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    As with reflections, the orthogonal projection onto a line that does not pass through the origin is an affine, not linear, transformation. Parallel projections are also linear transformations and can be represented simply by a matrix. However, perspective projections are not, and to represent these with a matrix, homogeneous coordinates can be ...

  7. Projection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Projection_(mathematics)

    For example, the mapping that takes a point (x, y, z) in three dimensions to the point (x, y, 0) is a projection. This type of projection naturally generalizes to any number of dimensions n for the domain and k ≤ n for the codomain of the mapping. See Orthogonal projection, Projection (linear algebra). In the case of orthogonal projections ...

  8. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    This point y is the orthogonal projection of x onto F, and the mapping P F : x → y is linear (see § Orthogonal complements and projections). This result is especially significant in applied mathematics, especially numerical analysis, where it forms the basis of least squares methods. [74]

  9. Endomorphism - Wikipedia

    en.wikipedia.org/wiki/Endomorphism

    Orthogonal projection onto a line, m, is a linear operator on the plane. This is an example of an endomorphism that is not an automorphism. In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism.