Search results
Results From The WOW.Com Content Network
In complex analysis, a branch of mathematics, the antiderivative, or primitive, of a complex-valued function g is a function whose complex derivative is g.More precisely, given an open set in the complex plane and a function :, the antiderivative of is a function : that satisfies =.
He wanted the solution for the purposes of cartography – specifically for constructing an accurate Mercator projection. [3] In the 1640s, Henry Bond, a teacher of navigation, surveying, and other mathematical topics, compared Wright's numerically computed table of values of the integral of the secant with a table of logarithms of the tangent ...
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
By the perfect graph theorem of Lovász (1972), the complement of any perfect graph is also perfect. Therefore, the complement of any comparability graph is perfect; this is essentially just Dilworth's theorem itself, restated in graph-theoretic terms (Berge & Chvátal 1984). Thus, the complementation property of perfect graphs can provide an ...
In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, [1] introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of ...
In calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function () to indicate that the indefinite integral of () (i.e., the set of all antiderivatives of ()), on a connected domain, is only defined up to an additive constant.
As suggested in the introduction, the Euler method is more accurate if the step size is smaller. The table below shows the result with different step sizes. The top row corresponds to the example in the previous section, and the second row is illustrated in the figure.
Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...