Search results
Results From The WOW.Com Content Network
Curium(III) oxide is a compound composed of curium and oxygen with the chemical formula Cm 2 O 3. It is a crystalline solid with a unit cell that contains two curium atoms and three oxygen atoms. The simplest synthesis equation involves the reaction of curium(III) metal with O 2−: 2 Cm 3+ + 3 O 2−---> Cm 2 O 3. [1]
Metallic curium is annealed in air or in an oxygen atmosphere: [1] Cm + O 2 → CmO 2. Curium(III) hydroxide and curium(III) oxalate are also usually used for this purpose: Cm(OH) 4 → CmO 2 + 2H 2 O Cm(C 2 O 4) 2 → CmO 2 + 2CO 2 + 2CO. Another way is the reaction of curium(III) oxide in an oxygen atmosphere at 650 °C: [2] 2Cm 2 O 3 + O 2 ...
Curium readily reacts with oxygen forming mostly Cm 2 O 3 and CmO 2 oxides, [1] but the divalent oxide CmO is also known. [2] Black CmO 2 can be obtained by burning curium oxalate (Cm 2 (C 2 O 4) 3), nitrate (Cm(NO 3) 3), or hydroxide in pure oxygen. [3] [4] Upon heating to 600–650 °C in vacuum (about 0.01 Pa), it transforms into the whitish ...
The main disadvantage of the stoichiometric ceria cycle lies in the fact that the reduction reaction temperature of cerium(IV) oxide is at the same range of the melting temperature (1,687–2,230 °C) of cerium(IV) oxide (), [5] which in the end results in some melting and sublimation of the material, which can produce reactor failures such as ...
Cerium(IV) oxide ("ceria") has the fluorite structure, similarly to the dioxides of praseodymium and terbium. Ceria is a nonstoichiometric compound, meaning that the real formula is CeO 2−x, where x is about 0.2. Thus, the material is not perfectly described as Ce(IV). Ceria reduces to cerium(III) oxide with hydrogen gas. [25]
Cerium(IV) oxide, also known as ceric oxide, ceric dioxide, ceria, cerium oxide or cerium dioxide, is an oxide of the rare-earth metal cerium. It is a pale yellow-white powder with the chemical formula CeO 2. It is an important commercial product and an intermediate in the purification of the element from the ores.
Diagram of an RTG used on the Cassini probe. A radioisotope thermoelectric generator (RTG, RITEG), sometimes referred to as a radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect.
Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.