Search results
Results From The WOW.Com Content Network
A wait-for graph in computer science is a directed graph used for deadlock detection in operating systems and relational database systems.. In computer science, a system that allows concurrent operation of multiple processes and locking of resources and which does not provide mechanisms to avoid or prevent deadlock must support a mechanism to detect deadlocks and an algorithm for recovering ...
The introduction of granular (subset) locks creates the possibility for a situation called deadlock. Deadlock is possible when incremental locking (locking one entity, then locking one or more additional entities) is used. To illustrate, if two bank customers asked two clerks to obtain their account information so they could transfer some money ...
Livelock is a special case of resource starvation; the general definition only states that a specific process is not progressing. [20] Livelock is a risk with some algorithms that detect and recover from deadlock. If more than one process takes action, the deadlock detection algorithm can be repeatedly triggered. This can be avoided by ensuring ...
In computer science, deadlock prevention algorithms are used in concurrent programming when multiple processes must acquire more than one shared resource. If two or more concurrent processes obtain multiple resources indiscriminately, a situation can occur where each process has a resource needed by another process.
This subtlety can increase the chance that a programmer will unknowingly introduce a deadlock. [citation needed] In a database management system, for example, a lock could protect, in order of decreasing granularity, part of a field, a field, a record, a data page, or an entire table. Coarse granularity, such as using table locks, tends to give ...
In a CO compliant multidatabase system, a locking-based global-deadlock, involving at least one data-access lock (non-materialized conflict), and two or more database systems, is a reflection of a global cycle in the Global augmented conflict graph, which results in a voting-deadlock.
Deadlock freedom is a safety property: the "bad thing" is a deadlock (which is discrete). Most of the time, knowing that a program eventually does some "good thing" is not satisfactory; we want to know that the program performs the "good thing" within some number of steps or before some deadline.
The conflict is materialized if the requested conflicting operation is actually executed: in many cases a requested/issued conflicting operation by a transaction is delayed and even never executed, typically by a lock on the operation's object, held by another transaction, or when writing to a transaction's temporary private workspace and ...