Search results
Results From The WOW.Com Content Network
Poynting vector in a static field, where E is the electric field, H the magnetic field, and S the Poynting vector. The consideration of the Poynting vector in static fields shows the relativistic nature of the Maxwell equations and allows a better understanding of the magnetic component of the Lorentz force, q(v × B).
Also calculating power flow direction (Poynting vector), a waveguide's normal modes, media-generated wave dispersion, and scattering can be computed from the E and H fields. CEM models may or may not assume symmetry, simplifying real world structures to idealized cylinders, spheres, and other regular geometrical objects. CEM models extensively ...
where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).
Building on the concept of the Poynting vector, which describes the flow of energy in a transverse electromagnetic wave as the vector product of its electric and magnetic fields (E × H), Heaviside sought to extend this by treating the transfer of energy due to the electric current in a conductor in a similar manner. In doing so he reversed the ...
The Poynting vector for a wave is a vector whose component in any direction is the irradiance (power per unit area) of that wave on a surface perpendicular to that direction. For a plane sinusoidal wave the Poynting vector is 1 / 2 Re{ E × H ∗ } , where E and H are due only to the wave in question, and the asterisk denotes ...
The members of the algebra may be decomposed by grade (as in the formalism of differential forms) and the (geometric) product of a vector with a k-vector decomposes into a (k − 1)-vector and a (k + 1)-vector. The (k − 1)-vector component can be identified with the inner product and the (k + 1)-vector component with the outer product. It is ...
All but the last term of can be written as the tensor divergence of the Maxwell stress tensor, giving: = +, As in the Poynting's theorem, the second term on the right side of the above equation can be interpreted as the time derivative of the EM field's momentum density, while the first term is the time derivative of the momentum density for ...
Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...