Search results
Results From The WOW.Com Content Network
The solubility product, K sp, for AgCl in water is 1.77 × 10 −10 at room temperature, which indicates that only 1.9 mg (that is, ) of AgCl will dissolve per liter of water. [1] The chloride content of an aqueous solution can be determined quantitatively by weighing the precipitated AgCl, which conveniently is non-hygroscopic since AgCl is ...
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
AgCl (s) ⇌ Ag + (aq) + Cl − (aq) However, there is a limit to how much salt can be dissolved in a given volume of water. This concentration is the solubility and related to the solubility product, K sp. This equilibrium constant depends on the type of salt (AgCl vs. NaCl, for example), temperature, and the common ion effect.
A miscibility gap between isostructural phases may be described as the solvus, a term also used to describe the boundary on a phase diagram between a miscibility gap and other phases. [2] Thermodynamically, miscibility gaps indicate a maximum (e.g. of Gibbs energy) in the composition range. [3] [4]
When silver nitrate (AgNO 3) is added to a solution of potassium chloride (KCl) the precipitation of a white solid (AgCl) is observed. [5] [6] AgNO 3 + KCl → AgCl↓ + KNO 3. The ionic equation allows to write this reaction by detailing the dissociated ions present in aqueous solution. Ag + + NO − 3 + K + + Cl − → AgCl↓ + K + + NO − 3
Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.
A space-filling model of n-octane, the straight chain (normal) hydrocarbon composed of 8 carbons and 18 hydrogens, formulae: CH 3 CH 2 (CH 2) 4 CH 2 CH 3 or C 8 H 18.Note, the representative shown is of a single conformational "pose" of a population of molecules, which, because of low Gibbs energy barriers to rotation about its carbon-carbon bonds (giving the carbon "chain" great flexibility ...