Search results
Results From The WOW.Com Content Network
Chloroethane, commonly known as ethyl chloride, is a chemical compound with chemical formula CH 3 CH 2 Cl, once widely used in producing tetraethyllead, a gasoline additive. It is a colorless, flammable gas or refrigerated liquid with a faintly sweet odor. [11]
Water: 100.00 0.512 0.00 –1.86 K b & K f [2] Ethyl Acetate: 77.1 [5] Acetic Anhydride: 139.0 [6] Ethylene Dichloride: 1.25 83.5 −35 [7] Acetonitrile: 0.78 81.6 −45 [8] Heptane: 98.4 [9] Isobutanol: 107.7 [10] n-Hexane: 0.66 68.7 [11] n-Butanol: 117.7 [12] Hydrochloric Acid: 84.8 [13] tert-Butanol: 82.5 [14] Chlorobenzene: 131.7 [15] p ...
In the laboratory it is occasionally used as a source of chlorine, with elimination of ethene and chloride. Via several steps, 1,2-dichloroethane is a precursor to 1,1,1-trichloroethane . Historically, before leaded petrol was phased out, chloroethanes were used as an additive in petrol to prevent lead buildup in engines.
A cooling bath or ice bath, in laboratory chemistry practice, is a liquid mixture which is used to maintain low temperatures, typically between 13 °C and −196 °C. These low temperatures are used to collect liquids after distillation , to remove solvents using a rotary evaporator , or to perform a chemical reaction below room temperature ...
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
First, ethylene is chlorinated over a ferric chloride catalyst to produce 1,2-dichloroethane: CH 2 =CH 2 + Cl 2 → ClCH 2 CH 2 Cl. When heated to around 400 °C with additional chlorine, 1,2-dichloroethane is converted to trichloroethylene: ClCH 2 CH 2 Cl + 2 Cl 2 → ClCH=CCl 2 + 3 HCl. This reaction can be catalyzed by a variety of substances.
Solubility of a substance is useful when separating mixtures. For example, a mixture of salt (sodium chloride) and silica may be separated by dissolving the salt in water, and filtering off the undissolved silica. The synthesis of chemical compounds, by the milligram in a laboratory, or by the ton in industry, both make use of the relative ...
A well-known example of a positive azeotrope is an ethanol–water mixture (obtained by fermentation of sugars) consisting of 95.63% ethanol and 4.37% water (by mass), which boils at 78.2 °C. [10] Ethanol boils at 78.4 °C, water boils at 100 °C, but the azeotrope boils at 78.2 °C, which is lower than either of its constituents. [11]