Search results
Results From The WOW.Com Content Network
The Riemann problem is very useful for the understanding of equations like Euler conservation equations because all properties, such as shocks and rarefaction waves, appear as characteristics in the solution. It also gives an exact solution to some complex nonlinear equations, such as the Euler equations.
Generally speaking, Riemann solvers are specific methods for computing the numerical flux across a discontinuity in the Riemann problem. [1] They form an important part of high-resolution schemes; typically the right and left states for the Riemann problem are calculated using some form of nonlinear reconstruction, such as a flux limiter or a WENO method, and then used as the input for the ...
The Darboux integral is defined whenever the Riemann integral is, and always gives the same result. Conversely, the gauge integral is a simple but more powerful generalization of the Riemann integral and has led some educators to advocate that it should replace the Riemann integral in introductory calculus courses. [12]
Obtain the solution for the local Riemann problem at the cell interfaces. This is the only physical step of the whole procedure. The discontinuities at the interfaces are resolved in a superposition of waves satisfying locally the conservation equations. The original Godunov method is based upon the exact solution of the Riemann problems.
In mathematics, Riemann–Hilbert problems, named after Bernhard Riemann and David Hilbert, are a class of problems that arise in the study of differential equations in the complex plane. Several existence theorems for Riemann–Hilbert problems have been produced by Mark Krein , Israel Gohberg and others.
For n = 2, this system is equivalent to the standard Cauchy–Riemann equations of complex variables, and the solutions are holomorphic functions. In dimension n > 2 , this is still sometimes called the Cauchy–Riemann system, and Liouville's theorem implies, under suitable smoothness assumptions, that any such mapping is a Möbius ...
The Riemann–Stieltjes integral admits integration by parts in the form () = () () ()and the existence of either integral implies the existence of the other. [2]On the other hand, a classical result [3] shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .
The narrow definition of the Riemann integral also does not cover the function / on the interval [0, 1]. The problem here is that the integrand is unbounded in the domain of integration. In other words, the definition of the Riemann integral requires that both the domain of integration and the integrand be bounded. However, the improper ...