Search results
Results From The WOW.Com Content Network
Download as PDF; Printable version; In other projects ... be an integer. For example, the secant ... the rate of convergence and order of convergence of a sequence ...
In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.
Since the secant method can carry out twice as many steps in the same time as Steffensen's method, [b] in practical use the secant method actually converges faster than Steffensen's method, when both algorithms succeed: The secant method achieves a factor of about (1.6) 2 ≈ 2.6 times as many digits for every two steps (two function ...
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .
The rate of convergence is distinguished from the number of iterations required to reach a given accuracy. For example, the function f ( x ) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically.
Sidi's method reduces to the secant method if we take k = 1. In this case the polynomial p n , 1 ( x ) {\displaystyle p_{n,1}(x)} is the linear approximation of f {\displaystyle f} around α {\displaystyle \alpha } which is used in the n th iteration of the secant method.
The convergence rate of the bisection method could possibly be improved by using a different solution estimate. The regula falsi method calculates the new solution estimate as the x-intercept of the line segment joining the endpoints of the function on the current bracketing interval. Essentially, the root is being approximated by replacing the ...
If the result of the secant method, s, lies strictly between b k and m, then it becomes the next iterate (b k+1 = s), otherwise the midpoint is used (b k+1 = m). Then, the value of the new contrapoint is chosen such that f(a k+1) and f(b k+1) have opposite signs. If f(a k) and f(b k+1) have opposite signs, then the contrapoint remains the same ...