When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Paraboloid - Wikipedia

    en.wikipedia.org/wiki/Paraboloid

    The paraboloid is hyperbolic if every other plane section is either a hyperbola, or two crossing lines (in the case of a section by a tangent plane). The paraboloid is elliptic if every other nonempty plane section is either an ellipse, or a single point (in the case of a section by a tangent plane). A paraboloid is either elliptic or hyperbolic.

  3. Paraboloidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Paraboloidal_coordinates

    Similarly, the separated equations for the Laplace equation can be obtained by setting = in the above. Each of the separated equations can be cast in the form of the Baer equation . Direct solution of the equations is difficult, however, in part because the separation constants α 2 {\displaystyle \alpha _{2}} and α 3 {\displaystyle \alpha _{3 ...

  4. Parabolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Parabolic_coordinates

    The red paraboloid corresponds to τ=2, the blue paraboloid corresponds to σ=1, and the yellow half-plane corresponds to φ=-60°. The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.0, -1.732, 1.5).

  5. Ruled surface - Wikipedia

    en.wikipedia.org/wiki/Ruled_surface

    A surface is doubly ruled if through every one of its points there are two distinct lines that lie on the surface. The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces. The plane is the only surface which contains at least three distinct lines through each of its points (Fuchs & Tabachnikov 2007).

  6. Roman surface - Wikipedia

    en.wikipedia.org/wiki/Roman_surface

    The paraboloid x = y z is shown in cyan and purple. In the image the paraboloids are seen to intersect along the z = 0 axis. If the paraboloids are extended, they should also be seen to intersect along the lines z = 1, y = x; z = −1, y = −x. The two paraboloids together look like a pair of orchids joined back-to-back.

  7. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    This familiar equation for a plane is called the general form of the equation of the plane or just the plane equation. [6] Thus for example a regression equation of the form y = d + ax + cz (with b = −1) establishes a best-fit plane in three-dimensional space when there are two explanatory variables.

  8. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]

  9. Point-set triangulation - Wikipedia

    en.wikipedia.org/wiki/Point-set_triangulation

    When the points are lifted to the paraboloid of equation + = + +, this construction results in the Delaunay triangulation of . Note that, in order for this construction to provide a triangulation, the lower convex hull of the lifted set of points needs to be simplicial .