When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    v. t. e. Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  3. Active learning (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Active_learning_(machine...

    e. Active learning is a special case of machine learning in which a learning algorithm can interactively query a human user (or some other information source), to label new data points with the desired outputs. The human user must possess knowledge/expertise in the problem domain, including the ability to consult/research authoritative sources ...

  4. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    Ensemble learning trains two or more machine learning algorithms on a specific classification or regression task. The algorithms within the ensemble model are generally referred as "base models", "base learners", or "weak learners" in literature. These base models can be constructed using a single modelling algorithm, or several different ...

  5. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    v. t. e. In machine learning (ML), a learning curve (or training curve) is a graphical representation that shows how a model's performance on a training set (and usually a validation set) changes with the number of training iterations (epochs) or the amount of training data. [1] Typically, the number of training epochs or training set size is ...

  6. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    Machine learningand data mining. In computational learning theory, probably approximately correct (PAC) learning is a framework for mathematical analysis of machine learning. It was proposed in 1984 by Leslie Valiant.

  7. Inductive bias - Wikipedia

    en.wikipedia.org/wiki/Inductive_bias

    The inductive bias (also known as learning bias) of a learning algorithm is the set of assumptions that the learner uses to predict outputs of given inputs that it has not encountered. [1] Inductive bias is anything which makes the algorithm learn one pattern instead of another pattern (e.g., step-functions in decision trees instead of ...

  8. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis. [1][2][3] Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data. Statistical learning theory has led to successful applications in fields such as ...

  9. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm. The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier. In 2011, authors of the Weka machine learning software ...