When.com Web Search

  1. Ads

    related to: what is lcd in algebra 3 examples of equations problems pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Lowest common denominator - Wikipedia

    en.wikipedia.org/wiki/Lowest_common_denominator

    In musical rhythm, the LCD is used in cross-rhythms and polymeters to determine the fewest notes necessary to count time given two or more metric divisions. For example, much African music is recorded in Western notation using 12 8 because each measure is divided by 4 and by 3, the LCD of which is 12.

  3. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.

  4. Clearing denominators - Wikipedia

    en.wikipedia.org/wiki/Clearing_denominators

    The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0 , a mathematical truth. But the same substitution applied to the original equation results in x /6 + 0/0 = 1 , which is mathematically meaningless .

  5. Cross-multiplication - Wikipedia

    en.wikipedia.org/wiki/Cross-multiplication

    Note that even simple equations like = are solved using cross-multiplication, since the missing b term is implicitly equal to 1: =. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator.

  6. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  7. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The Euclidean algorithm can be used to solve linear Diophantine equations and Chinese remainder problems for polynomials; continued fractions of polynomials can also be defined. The polynomial Euclidean algorithm has other applications, such as Sturm chains , a method for counting the zeros of a polynomial that lie inside a given real interval ...

  8. Elementary algebra - Wikipedia

    en.wikipedia.org/wiki/Elementary_algebra

    If the son's age was made known, then there would no longer be two unknowns (variables). The problem then becomes a linear equation with just one variable, that can be solved as described above. To solve a linear equation with two variables (unknowns), requires two related equations. For example, if it was also revealed that: Problem in words

  9. Theory of equations - Wikipedia

    en.wikipedia.org/wiki/Theory_of_equations

    The main problem of the theory of equations was to know when an algebraic equation has an algebraic solution. This problem was completely solved in 1830 by Évariste Galois, by introducing what is now called Galois theory. Before Galois, there was no clear distinction between the "theory of equations" and "algebra".