Search results
Results From The WOW.Com Content Network
The function () = has ″ = >, so f is a convex function. It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. The function () = has ″ =, so f is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points.
Convex functions are related to convex sets. Specifically, the function is convex if and only if its epigraph. A function (in black) is convex if and only if its epigraph, which is the region above its graph (in green), is a convex set. A graph of the bivariate convex function + +.
A formula editor is a computer program that is used to typeset mathematical formulas and mathematical expressions. Formula editors typically serve two purposes: They allow word processing and publication of technical content either for print publication, or to generate raster images for web pages or screen presentations.
In LP, the objective and constraint functions are all linear. Quadratic programming are the next-simplest. In QP, the constraints are all linear, but the objective may be a convex quadratic function. Second order cone programming are more general. Semidefinite programming are more general. Conic optimization are even more general - see figure ...
In complex geometry and analysis, the notion of convexity and its generalizations play an important role in understanding function behavior. Examples of classes of functions with a rich structure are, in addition to the convex functions, the subharmonic functions and the plurisubharmonic functions .
In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε - δ definition of uniform convexity as the modulus of continuity does to the ε - δ definition of continuity .
Complex convexity — extends the notion of convexity to complex numbers. Convex analysis - the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization. Convex combination - a linear combination of points where all coefficients are non-negative and sum to 1 ...
Convexity is a geometric property with a variety of applications in economics. [1] Informally, an economic phenomenon is convex when "intermediates (or combinations) are better than extremes". For example, an economic agent with convex preferences prefers combinations of goods over having a lot of any one sort of good; this represents a kind of ...