Search results
Results From The WOW.Com Content Network
The open-circuit test, or no-load test, is one of the methods used in electrical engineering to determine the no-load impedance in the excitation branch of a transformer. The no load is represented by the open circuit, which is represented on the right side of the figure as the "hole" or incomplete part of the circuit.
Under no load, when no current flows through the secondary coils, V nl is given by the ideal model, where V S = V P *N S /N P. Looking at the equivalent circuit and neglecting the shunt components, as is a reasonable approximation, one can refer all resistance and reactance to the secondary side and clearly see that the secondary voltage at no ...
Darlington gives an equivalent transform that can eliminate an ideal transformer altogether. This technique requires that the transformer is next to (or capable of being moved next to) an "L" network of same-kind impedances. The transform in all variants results in the "L" network facing the opposite way, that is, topologically mirrored. [2]
is the voltage at maximum load. The maximum load is the one that draws the greatest current, i.e. the lowest specified load resistance (never short circuit); is the voltage at minimum load. The minimum load is the one that draws the least current, i.e. the highest specified load resistance (possibly open circuit for some types of linear ...
Sources are modeled as ideal sources (ideal meaning sources that always keep the desired value) combined with their output impedance. The output impedance is defined as this modeled and/or real impedance in series with an ideal voltage source.
No-load loss (also called "fixed loss") is a portion of the loss of electricity that does not depend on the power being distributed through an electric circuit, as opposed to the load loss. [1] No-load loss typically depends on the operating voltage of a grid unit [2] and can be attributed to: dielectric loss in cables; [3] core loss in ...
The ratio of the voltage bases on either side of a transformer is selected to be the same as the ratio of the transformer voltage ratings. With these two rules, a per-unit impedance remains unchanged when referred from one side of a transformer to the other. This allows the ideal transformer to be eliminated from a transformer model.
By using an NIC as a negative resistor, it is possible to let a real generator behave (almost) like an ideal generator, (i.e., the magnitude of the current or of the voltage generated does not depend on the load). Figure: Negative impedance converter. An example for a current source is shown in the figure on the right.