Search results
Results From The WOW.Com Content Network
A k –elements combination from some set is another name for a k –elements subset, so the number of combinations, denoted as C(n, k) (also called binomial coefficient) is a number of subsets with k elements in a set with n elements; in other words it's the number of sets with k elements which are elements of the power set of a set with n ...
For finite sets, Cantor's theorem can be seen to be true by simple enumeration of the number of subsets. Counting the empty set as a subset, a set with elements has a total of subsets, and the theorem holds because > for all non-negative integers.
The cardinality of a set is the number of elements of the set. For example, defining two sets: A = {a, b} and B = {5, 6}. Both set A and set B consist of two elements each. Their Cartesian product, written as A × B, results in a new set which has the following elements: A × B = {(a,5), (a,6), (b,5), (b,6)}.
In additive combinatorics, the sumset (also called the Minkowski sum) of two subsets and of an abelian group (written additively) is defined to be the set of all sums of an element from with an element from .
The two-element subset {3, 5} is a generating set, since (−5) + 3 + 3 = 1 (in fact, any pair of coprime numbers is, as a consequence of Bézout's identity). The dihedral group of an n-gon (which has order 2n ) is generated by the set { r , s } , where r represents rotation by 2 π / n and s is any reflection across a line of symmetry.
In a size-(n + 1) set, choose a distinguished element. Each subset either contains the distinguished element or does not. If a subset contains the distinguished element, then its remaining elements are chosen from among the other n elements. By the induction hypothesis, the number of ways to do that is 2 n. If a subset does not contain the ...
The Bell numbers themselves, on the left and right sides of the triangle, count the number of ways of partitioning a finite set into subsets, or equivalently the number of equivalence relations on the set. Sun & Wu (2011) provide the following combinatorial interpretation of each value in the triangle.
The set {x: x is a prime number greater than 10} is a proper subset of {x: x is an odd number greater than 10} The set of natural numbers is a proper subset of the set of rational numbers; likewise, the set of points in a line segment is a proper subset of the set of points in a line.