Search results
Results From The WOW.Com Content Network
To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).
An explicit formula for them can be obtained by applying the principle of inclusion–exclusion to a very closely related problem, namely, counting the number of partitions of an n-set into k non-empty but distinguishable boxes (ordered non-empty subsets). Using the universal set consisting of all partitions of the n-set into k (possibly empty ...
The number of vertical lines is 4 − 1. The number of multisets of cardinality 18 is then the number of ways to arrange the 4 − 1 vertical lines among the 18 + 4 − 1 characters, and is thus the number of subsets of cardinality 4 − 1 of a set of cardinality 18 + 4 − 1.
The Bell numbers themselves, on the left and right sides of the triangle, count the number of ways of partitioning a finite set into subsets, or equivalently the number of equivalence relations on the set. Sun & Wu (2011) provide the following combinatorial interpretation of each value in the triangle.
where is the set of square numbers. A subject that has received a fair amount of study is that of sets with small doubling , where the size of the set A + A {\displaystyle A+A} is small (compared to the size of A {\displaystyle A} ); see for example Freiman's theorem .
The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem. The input to the problem is a multiset of n integers and a positive integer m representing the number of subsets. The goal is to construct, from the input integers, some m subsets. The problem ...
A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets [2] (i.e., the subsets are nonempty mutually disjoint sets). Equivalently, a family of sets P is a partition of X if and only if all of the following conditions hold: [ 3 ]
A k –elements combination from some set is another name for a k –elements subset, so the number of combinations, denoted as C(n, k) (also called binomial coefficient) is a number of subsets with k elements in a set with n elements; in other words it's the number of sets with k elements which are elements of the power set of a set with n ...