Search results
Results From The WOW.Com Content Network
Example of plotting samples of a frequency distribution in the unit "bins", which are integer values. A scale factor of 0.7812 converts a bin number into the corresponding physical unit (hertz). A common practice is to sample the frequency spectrum of the sampled data at frequency intervals of f s N , {\displaystyle {\tfrac {f_{s}}{N}},} for ...
An n-bit LUT can encode any n-input Boolean function by storing the truth table of the function in the LUT. This is an efficient way of encoding Boolean logic functions, and LUTs with 4-6 bits of input are in fact the key component of modern field-programmable gate arrays (FPGAs) which provide reconfigurable hardware logic capabilities.
The array of | | values is known as a periodogram, and the parameter is called NFFT in the Matlab function of the same name. [ 4 ] In order to evaluate one cycle of s N {\displaystyle s_{_{N}}} numerically, we require a finite-length s [ n ] {\displaystyle s[n]} sequence.
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
In relation to the desired frequency function, there may also be an accompanying weighting function, which describes, for each frequency, how important it is that the resulting frequency function approximates the desired one. Typical examples of frequency function are: A low-pass filter is used to cut unwanted high-frequency signals.
function factorial (n is a non-negative integer) if n is 0 then return 1 [by the convention that 0! = 1] else if n is in lookup-table then return lookup-table-value-for-n else let x = factorial(n – 1) times n [recursively invoke factorial with the parameter 1 less than n] store x in lookup-table in the n th slot [remember the result of n! for ...
In definition, the continuous wavelet transform is a convolution of the input data sequence with a set of functions generated by the mother wavelet. The convolution can be computed by using a fast Fourier transform (FFT) algorithm. Normally, the output (,) is a real valued function except when the mother wavelet is complex. A complex mother ...
However, one must exercise caution in attributing causality. If the relation (transfer function) between the input and output is nonlinear, then values of the coherence can be erroneous. Another common mistake is to assume a causal input/output relation between observed variables, when in fact the causative mechanism is not in the system model.