Search results
Results From The WOW.Com Content Network
NumPy addresses the slowness problem partly by providing multidimensional arrays and functions and operators that operate efficiently on arrays; using these requires rewriting some code, mostly inner loops, using NumPy. Using NumPy in Python gives functionality comparable to MATLAB since they are both interpreted, [18] and they both allow the ...
Args: histogram (np.ndarray): The histogram of the image as a 1D numpy array, where each element represents the count of pixels at a specific intensity level. minimum_bin_count (int): Minimum count for a bin to be considered in the thresholding process. Bins with counts below this value are ignored, reducing the effect of noise.
Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing over elements collapses the input array by 1 dimension.
Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).
In such case it is always possible to use a function call, but this can be cumbersome and inelegant. For example, to pass conditionally different values as an argument for a constructor of a field or a base class, it is impossible to use a plain if-else statement; in this case we can use a conditional assignment expression, or a function call ...
Numba is used from Python, as a tool (enabled by adding a decorator to relevant Python code), a JIT compiler that translates a subset of Python and NumPy code into fast machine code. Pythran compiles a subset of Python 3 to C++ ( C++11 ).
In the Python library NumPy, the outer product can be computed with function np.outer(). [8] In contrast, np.kron results in a flat array. The outer product of multidimensional arrays can be computed using np.multiply.outer.
function factorial (n is a non-negative integer) if n is 0 then return 1 [by the convention that 0! = 1] else if n is in lookup-table then return lookup-table-value-for-n else let x = factorial(n – 1) times n [recursively invoke factorial with the parameter 1 less than n] store x in lookup-table in the n th slot [remember the result of n! for ...