When.com Web Search

  1. Ad

    related to: what is the determinant function in statistics calculator with steps 1 2

Search results

  1. Results From The WOW.Com Content Network
  2. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    In particular, the function f has a differentiable inverse function in a neighborhood of a point x if and only if the Jacobian determinant is nonzero at x (see inverse function theorem for an explanation of this and Jacobian conjecture for a related problem of global invertibility).

  3. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    In mathematics, the determinant is a scalar-valued function of the entries of a square matrix.The determinant of a matrix A is commonly denoted det(A), det A, or | A |.Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix.

  4. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    Lemma 1. ′ =, where ′ is the differential of . This equation means that the differential of , evaluated at the identity matrix, is equal to the trace.The differential ′ is a linear operator that maps an n × n matrix to a real number.

  5. Functional determinant - Wikipedia

    en.wikipedia.org/wiki/Functional_determinant

    The most popular of which for computing functional determinants is the zeta function regularization. [1] For instance, this allows for the computation of the determinant of the Laplace and Dirac operators on a Riemannian manifold, using the Minakshisundaram–Pleijel zeta function. Otherwise, it is also possible to consider the quotient of two ...

  6. Leibniz formula for determinants - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for...

    Thus the only alternating multilinear functions with () = are restricted to the function defined by the Leibniz formula, and it in fact also has these three properties. Hence the determinant can be defined as the only function det : M n ( K ) → K {\displaystyle \det :M_{n}(\mathbb {K} )\rightarrow \mathbb {K} } with these three properties.

  7. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    [2] [3] [4] The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The eigenvalues of the Hessian at that point are the principal curvatures of the function, and the eigenvectors are the principal directions of curvature.

  8. Cauchy–Binet formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Binet_formula

    For m = 0, A and B are empty matrices (but of different shapes if n > 0), as is their product AB; the summation involves a single term S = Ø, and the formula states 1 = 1, with both sides given by the determinant of the 0×0 matrix. For m = 1, the summation ranges over the collection ([]) of the n different singletons taken from [n], and both ...

  9. Liouville's formula - Wikipedia

    en.wikipedia.org/wiki/Liouville's_formula

    In mathematics, Liouville's formula, also known as the Abel–Jacobi–Liouville identity, is an equation that expresses the determinant of a square-matrix solution of a first-order system of homogeneous linear differential equations in terms of the sum of the diagonal coefficients of the system.