Ad
related to: solving compound inequalities quizlet
Search results
Results From The WOW.Com Content Network
The fact that the triple-angle formula for sine and cosine only involves powers of a single function allows one to relate the geometric problem of a compass and straightedge construction of angle trisection to the algebraic problem of solving a cubic equation, which allows one to prove that trisection is in general impossible using the given tools.
Bernstein inequalities (probability theory) Boole's inequality; Borell–TIS inequality; BRS-inequality; Burkholder's inequality; Burkholder–Davis–Gundy inequalities; Cantelli's inequality; Chebyshev's inequality; Chernoff's inequality; Chung–Erdős inequality; Concentration inequality; Cramér–Rao inequality; Doob's martingale inequality
When solving inequalities using chained notation, it is possible and sometimes necessary to evaluate the terms independently. For instance, to solve the inequality 4 x < 2 x + 1 ≤ 3 x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction.
The rearrangement inequality can be regarded as intuitive in the following way. Imagine there is a heap of $10 bills, a heap of $20 bills and one more heap of $100 bills.
Reducing and re-arranging the coefficients by adding multiples of as necessary, we can assume < (in fact, this is the unique such satisfying the equation and inequalities). Similarly we take u , v {\displaystyle u,v} satisfying N − k = u a + v b {\displaystyle N-k=ua+vb} and 0 ≤ u < b {\displaystyle 0\leq u<b} .
The numbers p and q above are said to be Hölder conjugates of each other. The special case p = q = 2 gives a form of the Cauchy–Schwarz inequality. [1] Hölder's inequality holds even if ‖ fg ‖ 1 is infinite, the right-hand side also being infinite in that case.
The phenomenon by which the boiling point of a liquid (a solvent) increases when another compound is added, meaning that the resulting solution has a higher boiling point than the pure solvent. This happens whenever a non-volatile solute, such as a salt, is added to a pure solvent, such as water.
The hinge theorem holds in Euclidean spaces and more generally in simply connected non-positively curved space forms.. It can be also extended from plane Euclidean geometry to higher dimension Euclidean spaces (e.g., to tetrahedra and more generally to simplices), as has been done for orthocentric tetrahedra (i.e., tetrahedra in which altitudes are concurrent) [2] and more generally for ...