Search results
Results From The WOW.Com Content Network
Bernstein inequalities (probability theory) Boole's inequality; Borell–TIS inequality; BRS-inequality; Burkholder's inequality; Burkholder–Davis–Gundy inequalities; Cantelli's inequality; Chebyshev's inequality; Chernoff's inequality; Chung–Erdős inequality; Concentration inequality; Cramér–Rao inequality; Doob's martingale inequality
When solving inequalities using chained notation, it is possible and sometimes necessary to evaluate the terms independently. For instance, to solve the inequality 4 x < 2 x + 1 ≤ 3 x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction.
Proof [2]. Since + =, =. A graph = on the -plane is thus also a graph =. From sketching a visual representation of the integrals of the area between this curve and the axes, and the area in the rectangle bounded by the lines =, =, =, =, and the fact that is always increasing for increasing and vice versa, we can see that upper bounds the area of the rectangle below the curve (with equality ...
The rearrangement inequality can be regarded as intuitive in the following way. Imagine there is a heap of $10 bills, a heap of $20 bills and one more heap of $100 bills.
The numbers p and q above are said to be Hölder conjugates of each other. The special case p = q = 2 gives a form of the Cauchy–Schwarz inequality. [1] Hölder's inequality holds even if ‖ fg ‖ 1 is infinite, the right-hand side also being infinite in that case.
The phenomenon by which the boiling point of a liquid (a solvent) increases when another compound is added, meaning that the resulting solution has a higher boiling point than the pure solvent. This happens whenever a non-volatile solute, such as a salt, is added to a pure solvent, such as water.
These inequalities are significant for their nearly complete lack of conditional assumptions. For example, for any random variable with finite expectation, the Chebyshev inequality implies that there is at least a 75% probability of an outcome being within two standard deviations of the expected value. However, in special cases the Markov and ...
The first of these quadratic inequalities requires r to range in the region beyond the value of the positive root of the quadratic equation r 2 + r − 1 = 0, i.e. r > φ − 1 where φ is the golden ratio. The second quadratic inequality requires r to range between 0 and the positive root of the quadratic equation r 2 − r − 1 = 0, i.e. 0 ...